Abstract
We propose a mode conversion method that enables transformation of the propagating mode from fundamental to higher-order modes by utilizing asymmetric graded index (A-GRIN) structures. Refractive index variations of two different asymmetric gradient profiles, i.e., exponential and Luneburg lens profiles, have been approximated by two-dimensional photonic crystals (PCs). The basic structure is composed of constant radii with different lattice sizes. The designed GRIN mode converters provide relatively high transmission efficiency in the spectral region of interest and achieve the transformation in compact configuration. Numerical approaches utilizing the finite-difference time-domain and plane wave expansion methods are used to analyze the mode conversion phenomenon of proposed GRIN PC media. Analytical formulation based on ray theory is outlined to explore both ray trajectories and the physical concept of a wavefront retardation mechanism.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.