Abstract
In this paper, we present a mode space method for atomistic non-equilibrium Green's function simulations of armchair graphene nanoribbon FETs that includes electron-phonon scattering. With reference to both conventional and tunnel FET structures, we show that, in the ideal case of a smooth electrostatic potential, the modes can be decoupled in different groups without any loss of accuracy. Thus, inter-subband scattering due to electron-phonon interactions is properly accounted for, while the overall simulation time considerably improves with respect to real-space, with a speed-up factor of 40 for a 1.5-nm-wide device. Such factor increases with the square of the device width. We also discuss the accuracy of two commonly used approximations of the scattering self-energies: the neglect of the off-diagonal entries in the mode-space expressions and the neglect of the Hermitian part of the retarded self-energy. While the latter is an acceptable approximation in most bias conditions, the former is somewhat inaccurate when the device is in the off-state and optical phonon scattering is essential in determining the current via band-to-band tunneling. Finally, we show that, in the presence of a disordered potential, a coupled mode space approach is necessary, but the results are still accurate compared to the real-space solution.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.