Abstract

There are several criteria for predicting brittle fracture in mode I and mixed mode loading. In this paper, the modified maximum tangential stress criterion originally proposed for mixed mode loading, is employed to study theoretically brittle fracture for mode I cracks. In particular, the effect of the non-singular term of stress, often known as the T-stress, on the angle of initiation of fracture and the onset of crack growth is explored. The T-stress component of the tangential stress vanishes along the crack line. Therefore, it is often postulated for linear elastic materials that the effect of T-stress on mode I brittle fracture can be ignored. However, it is shown here that the maximum tangential stress is no longer along the line of initial crack when the T-stress exceeds a critical value. Thus, a deviation in the angle of initiation of fracture can be expected for specimens having a large T-stress. It is shown that the deviation angle increases for larger values of T-stress. Theoretical results show that the apparent fracture toughness decreases significantly when a deviation in angle occurs. Earlier experimental results are used to corroborate the findings. The effect of large T-stresses is also explored for a crack specimen undergoing moderate scale yielding. The elastic-plastic investigation is conducted using finite element analysis. The finite element results reveal a similar deviation in the angle of maximum tangential stress for small to moderate scale yielding.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.