Abstract

AbstractThe identification of modes of oscillation is an important first step towards the seismology of stars. Low- and high-degree nonradial modes of oscillation may appear as variations in the line profiles of rapidly rotating δ Scuti stars. We present a technique whereby complex patterns in the line profiles are decomposed into Fourier components in both time and “Doppler space”. The technique is applied to the 7.3-hour time series of high-resolution data obtained from CFHT for the δ Scuti star τ Peg. In addition to the low-degree mode which has been identified in photometric studies (Breger 1991), we find evidence for at least three high-degree modes near 11 and 15. Correcting for the rotation of the star, most of these modes appear to oscillate with frequencies near 17 cycles day-1. Our results are found to be in good agreement with the theoretical limits imposed on the frequencies of oscillation by the models of Dziembowski (1990).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call