Abstract

This paper investigates the stochastic synchronization problem for Markovian hybrid coupled neural networks with interval time-varying mode-delays and random coupling strengths. The coupling strengths are mutually independent random variables and the coupling configuration matrices are nonsymmetric. A mode-dependent augmented Lyapunov-Krasovskii functional (LKF) is proposed, where some terms involving triple or quadruple integrals are considered, which makes the LKF matrices mode-dependent as much as possible. This gives significant improvement in the synchronization criteria, i.e., less conservative results can be obtained. In addition, by applying an extended Jensen's integral inequality and the properties of random variables, new delay-dependent synchronization criteria are derived. The obtained criteria depend not only on upper and lower bounds of mode-delays but also on mathematical expectations and variances of the random coupling strengths. Finally, two numerical examples are provided to demonstrate the feasibility of the proposed results.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call