Abstract
In this paper, a general model of coupled neural networks with Markovian jumping and random coupling strengths is introduced. In the process of evolution, the proposed model switches from one mode to another according to a Markovian chain, and all the modes have different constant time-delays. The coupling strengths are characterized by mutually independent random variables. When compared with most of existing dynamical network models which share common time-delay for all modes and have constant coupling strengths, our model is more practical because different chaotic neural network models can have different time-delays and coupling strength of complex networks may randomly vary around a constant due to environmental and artificial factors. By designing a novel Lyapunov functional and using some inequalities and the properties of random variables, we derive several new sufficient synchronization criteria formulated by linear matrix inequalities. The obtained criteria depend on mode-delays and mathematical expectations and variances of the random coupling strengths as well. Numerical examples are given to demonstrate the effectiveness of the theoretical results, meanwhile right-continuous Markovian chain is also presented.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Neural Networks and Learning Systems
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.