Abstract

We investigate the dependence of decoherence on the mode number M in a multiple-mode Aharonov-Bohm (AB) interferometer. The design of the AB interferometer allows us to precisely determine M by the additivity rule of ballistic conductors; meanwhile, the decoherence rate is simultaneously deduced by the variance of the AB oscillation amplitude. The AB amplitude decreases and fluctuates with depopulating M. Moreover, the normalized amplitude exhibits a maximum at a specific M (∼9). Data analysis reveals that the charge-fluctuation-induced dephasing, which depends on the geometry and the charge relaxation resistance of the system, could play an essential role in the decoherence process. Our results suggest that the phase coherence, in principle, can be optimized using a deliberated design and pave one of the ways toward the engineering of quantum coherence.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.