Abstract

The mode and bond selectivities in methane dissociative chemisorption on Ni(111) are studied using a quasi-classical trajectory (QCT) method on a twelve-dimensional global potential energy surface based on a large number of density functional theory points. The calculated reaction probabilities near and above the reaction barrier reproduced the general trends observed in experimental investigations of various vibrationally excited CH4, CHD3, and CH2D2 species on nickel surfaces. The mechanism of these mode and bond selectivities is analyzed using the recently proposed sudden vector projection model.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call