Abstract

A previously reported potential energy surface (PES) and a new barrierless PES (both based on ab initio data and describing the CH3 group as a pseudoatom) were used to study the O(1D)+CH4→OH+CH3 reaction with the quasiclassical trajectory (QCT) method. The new PES accurately reproduces the experimental rate constant values, in contrast to the previous PES. The QCT study was mainly performed at the relative translational energy (ET) resulting from the photodissociation of N2O at 193 nm (〈ET〉=0.403 eV), although the collision energy obtained from the photodissociation of O3 at 248 nm (〈ET〉=0.212 eV) was also considered. Good agreement between theory and experiment was obtained for the OH vibrational populations and for the OH rotational populations for the v′⩾2 vibrational levels, while the rotational distributions for v′=0–1 are more excited than in the experiment. The QCT results at ET=0.403 eV satisfactorily reproduce the experimental kk′ angular distribution of the state-specific channel OH(v′=4, N′=8) and the corresponding ET′ distribution. For OH(v′=0, N′=5) the reproduction of these properties is poorer, especially for the ET′ distribution. At 0.403 eV the contribution of the abstraction mechanism to the reaction mode is negligible and two insertion like mechanisms (with fast or slow elimination) are found to be predominant, as suggested experimentally. The discrepancies observed between the QCT and experimental results can be explained on the basis of the defective description of the insertion/slow elimination mechanism provided by the model.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.