Abstract
Electric spindles are a critical component of numerically controlled machine tools that directly affect machining precision and efficiency. The accurate identification of the modal parameters of an electric spindle is essential for optimizing design, enhancing dynamic performance, and facilitating fault diagnosis. This study proposes a covariance-driven stochastic subspace identification (SSI-cov) method integrated with a simulated annealing (SA) strategy and fuzzy C-means (FCM) clustering algorithm to achieve the automated identification of modal parameters for electric spindles. Using both finite element simulations and experimental tests conducted at 22 °C, the first five natural frequencies of the electric spindle under free, constrained, and dynamic conditions were extracted. The experimental results demonstrated experiment errors of 0.17% to 0.33%, 1.05% to 3.27%, and 1.29% to 3.31% for the free, constrained, and dynamic states, respectively. Compared to the traditional SSI-cov method, the proposed SA-FCM method improved accuracy by 12.05% to 27.32% in the free state, 17.45% to 47.83% in the constrained state, and 25.45% to 49.12% in the dynamic state. The frequency identification errors were reduced to a range of 2.25 Hz to 20.81 Hz, significantly decreasing errors in higher-order modes and demonstrating the robustness of the algorithm. The proposed method required no manual intervention, and it could be utilized to accurately analyze the modal parameters of electric spindles under free, constrained, and dynamic conditions, providing a precise and reliable solution for the modal analysis of electric spindles in various dynamic states.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.