Abstract

Floating platforms provide vertical axis wind turbines (VAWTs) significant advantages over offshore horizontal axis wind turbines, which has led to increased research interest in offshore VAWT technology. This paper examines dynamic stability of floating VAWTs and presents structural dynamic and aero-elastic flutter analysis of utility-scale 5 MW floating VAWTs by coupling a rotor finite element model with a linearized model for the floating system. The coupled floating VAWT model is utilized to study the effects of tower height, number of blades, blade tapering scheme, and impacts of the floating platform on modal properties and flutter. The study provides important new results and guidance to floating VAWT designers: (1) tower height increase leads to lower tower frequencies more prone to resonance, (2) by moving from land-based foundations to a floating TLP foundation, tower-mode frequency is increased significantly (by 49%–68%) which mitigates resonance and increases the flutter RPM (154% increase), (3) increasing the number of blades reduces the tower mode frequencies for both land-based and floating configuration, and (4) blade chord tapering can have a significant impact on increasing the tower mode flutter RPM. Further, analysis of low-frequency rigid body modes shows a safe, higher flutter RPM relative to the operating RPM.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call