Abstract
The design of floating support structures for wind turbines located offshore is a relatively new field. In contrast, the offshore oil and gas industry has been developing its technologies since the mid 1950s. However, the significantly and subtly different requirements of the offshore wind industry call for new methodologies. An Energy Technologies Institute (ETI) funded project called NOVA (for Novel Vertical Axis wind turbine) examined the feasibility of a large offshore vertical axis wind turbine in the 10–20 MW power range. The development of a case study for the NOVA project required a methodology to be developed to select the best configuration, based on the system dynamics. The design space has been investigated, ranking the possible options using a multi-criteria decision making (MCDM) method called TOPSIS. The best ‘class’ or design solution (based on water plane area stability) has been selected for a more detailed analysis. Two configurations are considered: a barge and a semi-submersible. The iterations to optimise and compare these two options are presented here, taking their dynamics and costs into account. The barge concept evolved to the ‘triple doughnut-Miyagawa’ concept, consisting of an annular cylindrical shape with an inner (to control the damping) and outer (to control added mass) bottom flat plates. The semi-submersible was optimised to obtain the best trade-off between dynamic behaviour and amount of material needed. The main conclusion is that the driving requirement is an acceptable response to wave action, not the ability to float or the ability to counteract the wind turbine overturning moment. A simple cost comparison is presented.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.