Abstract

We examine wave propagation in few-mode and multimode fibers with a small index difference between core and cladding, where linearly polarized (LP) “modes” serve as a highly useful simplified solution. However, for a nonzero index difference, each LP “mode” decomposes into two true fiber waveguide modes, typically an HE and an EH mode. These two constituent modes have different group delays, which results in an effect termed modal birefringence. This effect needs to be understood in the design of mode-multiplexed transmission systems. We report an analysis of modal birefringence including scaling rules for fiber design, and provide numerical results for about 50 of the lower order modes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.