Abstract

Abstract This paper describes a historical masonry minaret, its finite element modeling, modal testing, and finite element model calibration. İskenderpaşa historical masonry minaret located in Trabzon City Center, Turkey, is selected as an application. Modal analysis is performed on the developed 3-D finite element model of the minaret to obtain the analytical frequencies and mode shapes. The ambient vibration tests on the minaret under environmental excitations, such as traffic loads and wind, are conducted. The output-only modal parameter identification is carried out by using peak picking of the average normalized power spectral densities in the frequency domain and stochastic subspace identification in the time domain. Dynamic characteristics such as natural frequencies, mode shapes, and damping ratios are determined. The finite element model of the minaret is calibrated to minimize the differences between analytically and experimentally estimated modal properties by changing some uncertain modeling parameters such as material properties and boundary conditions. At the end of the study, maximum differences in the natural frequencies are reduced on an average from 27 % to 5 %. A good agreement is also found between analytical and experimental natural frequencies and mode shapes after model calibration.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.