Abstract
Abstract We calculate the direct sum of the mod-two cohomology of all alternating groups, with both cup and transfer product structures, which in particular determines the additive structure and ring structure of the cohomology of individual groups. We show that there are no nilpotent elements in the cohomology rings of individual alternating groups. We calculate the action of the Steenrod algebra and discuss individual component rings. A range of techniques are developed, including an almost Hopf ring structure associated to the embeddings of products of alternating groups and Fox–Neuwirth resolutions, which are new techniques. We also extend understanding of the Gysin sequence relating the cohomology of alternating groups to that of symmetric groups and calculation of restriction to elementary abelian subgroups.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal für die reine und angewandte Mathematik (Crelles Journal)
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.