Abstract

ABSTRACT: As a generalization of Wedderburn's theorem, Herstein [5] proved that a finite ring R is commutative, if all nilpotent elements are contained in the center of R. However a finite ring with commuting nilpotent elements is not necessarily commutative. Recently, in [9] and [10], Simons described the structure of finite rings R with J(R)2 = 0 in a variety with definable principal congruences. In this paper, we will consider the difference between the finite commutative rings and the finite rings in which any two nilpotent elements commute with each other. As a consequence, we describe the structure of finite rings R with [J(R), J(R)] = 0 in a variety with definable principal congruences.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.