Abstract

Mineralogical and isotopic studies were carried out on the natural nuclear reaction zone 2 from the Oklo deposit to evaluate the mobility of several nuclear reaction products in response to the alteration of the reaction zone and to identify the mechanisms which could retard the transport of released radionuclides. To address these issues, in situ isotopic analyses by SHRIMP and a selective extraction procedure were performed to constrain the structural location of nuclear reaction products (exchangeable and non exchangeable) and their association with mineral phases. The distribution patterns of U, REE, Zr and Mo isotopes reveal that substantial amounts were released from the core and migrated through the hydrothermal alteration halo over metric distances, owing to uraninite dissolution and advective transport by hydrothermal solutions during and soon after criticality. The results emphasize the mobility of Zr at Oklo, this element being often considered as “immobile” during water–rock interactions. The main output is the demonstration of the net effects of sorption and coprecipitation processes. Chlorite and to a lesser extent illite were found to have adsorbed significant amounts of U, REE, Zr (and probably Th) and less sorbing elements such as Mo. Coprecipitation of secondary UO2 and P-rich coffinite within the alteration halo is also an important means of retardation. The concentration of radionuclides released from the reactor were probably high and they display solubility limited transport behaviour. No retention effect was found for Se in the immediate vicinity of the reactor and this element may have moved farther from its source of production. These results have interesting implications for the evaluation of long-term containment of radionuclides. They provide a simple illustration of the performance of a clay barrier in the uptake of radionuclides by sorption onto clays and reincorporation in secondary U-minerals. This study also demonstrates the robustness of these retention processes over extremely long periods of time.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call