Abstract
The mobility of the disordered terminal regions of flagellin was examined in detail based on 1H NMR chemical shifts and spin-lattice relaxation times in the rotating frame. Proteolytic fragments of flagellin with terminal deletions of different sizes were used to compare the dynamical properties of various N- and C-terminal segments. We found that dynamic properties of different terminal segments were similar to each other and were close to those of the heat-denatured state of flagellin. The main chain of these terminal segments undergoes rapid motions with effective correlation times of 1.3-4.1 x 10(-9) s. The terminal regions contain no large segments with well-defined structure. However, comparison with the random-coiled state of poly-L-lysine suggests significant structural constraints in the terminal regions (as well as in the heat-denatured flagellin) which may reflect the existence of some highly fluctuating secondary structure, as suggested by earlier CD studies.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have