Abstract

We investigate mobility regimes for localized modes in the discrete nonlinear Schrödinger (DNLS) equation with the cubic-quintic on-site terms. Using the variational approximation, the largest soliton's total power admitting progressive motion of kicked discrete solitons is predicted by comparing the effective kinetic energy with the respective Peierls-Nabarro (PN) potential barrier. The prediction, for the DNLS model with the cubic-only nonlinearity too, demonstrates a reasonable agreement with numerical findings. A small self-focusing quintic term quickly suppresses the mobility. In the case of the competition between the cubic self-focusing and quintic self-defocusing terms, we identify parameter regions where odd and even fundamental modes exchange their stability, involving intermediate asymmetric modes. In this case, stable solitons can be set in motion by kicking, so as to let them pass the PN barrier. Unstable solitons spontaneously start oscillatory or progressive motion, if they are located, respectively, below or above a mobility threshold. Collisions between moving discrete solitons, at the competing nonlinearities frame, are studied too.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.