Abstract

AbstractUnderstanding human mobility in urban areas is crucial for transportation planning, operations, and online control. The availability of large-scale and diverse mobility data (e.g., smart card data, GPS data), provides valuable insights into human mobility patterns. However, organizing and analyzing such data pose significant challenges. Knowledge graph (KG), a graph-based knowledge representation method, has been successfully applied in various domains but has limited applications in urban mobility. This paper aims to address this gap by reviewing existing KG studies, introducing the concept of a mobility knowledge graph (MKG), and proposing a general learning framework to construct MKG from smart card data. The MKG represents hidden travel activities between public transport stations, with stations as nodes and their relations as edges. Two decomposition approaches, rule-based and neural network-based models, are developed to extract MKG relations from smart card data, capturing latent spatiotemporal travel dependencies. The case study is conducted using smart card data from a heavily used urban railway system to validate the effectiveness of MKG in predicting individual trip destinations. The results demonstrate the significance of establishing an MKG database, as it assists in a typical problem of predicting individual trip destinations for public transport systems with only tap-in records. Additionally, the MKG framework offers potential for efficient data management and applications such as individual mobility prediction and personalized travel recommendations.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call