Abstract

We report doping effects in an organic semiconductor, crystalline rubrene. Oxygen-related states are introduced (removed) by annealing in oxygen (vacuum), at an elevated temperature. Room temperature stability is found in the resulting effects: (1) about two orders of magnitude increase in carrier density at equilibrium, (2) significant modification of threshold voltages, and (3) an unchanged field-effect mobility in the on-current state. Density of states data are modeled as tunneling from the valence band in the channel region into deep-level acceptors in the adjacent region. These oxygen acceptors are the likely dopant species.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.