Abstract

There is a need for a prosthetic knee joint design that is technologically and functionally appropriate for use in developing countries. To develop and clinically evaluate a new type of stance phase controlled prosthetic knee joint that provides stance phase stability without inhibiting swing phase flexion. A crossover repeated measures study design comparing the new knee joint to the participant's conventional low- or high-end prosthetic knee joint. The new knee joint was fitted to fourteen individuals aged 15 to 67 years with unilateral lower limb amputations. Walk tests were performed to measure walking speed. Energy expenditure was estimated using the physiological cost index (PCI). Walking speeds with the new knee joint were on average 0.14 m/s faster than conventional low-end knees (p < 0.0001), but 0.07 m/s slower than conventional high-end prosthetic knees (p = 0.008). The PCI was similar across all three knee joint technologies (p = 0.276). Mobility function with the new knee joint, in terms of walking speed, was more closely matched to high-end than low-end prosthetic knee joints. Therefore, given its relatively simple design, the new stance phase control mechanism may offer a functional and cost effective solution for active transfemoral amputees. This paper describes a new type of prosthetic knee joint mechanism that is intended to be cost-effective while providing high-level stance phase function to active individuals with a transfemoral amputation. Initial clinical testing suggests that the new knee joint may have some functional advantages over existing technologies in this category.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call