Abstract

Pseudomorphic In x Ga 1− x As/In 0.52Al 0.48As modulation-doped heterostructures were grown by molecular beam epitaxy (MBE) on InP (100) substrates over a range of indium compositions from x=0.53 to 0.75. Low temperature photoluminescence (PL) measurements show a prominent reduction in the InGaAs linewidth due to the quantum-size effect as the indium composition is increased from its lattice-matched value of 0.53. The lowest linewidth of 6.8 meV was achieved at an indium composition of 0.65, above which an increase in the linewidth was observed due to the overwhelming effects of interfacial strain. The Hall mobilities at 300 K and 77 K increase in correspondence to the PL linewidth reduction as the indium composition is increased. Although initial signs of mobility saturation can be seen at an indium composition of 0.65, the peak mobility at 77 K of 8.9×10 4cm 2V s −1was achieved at an indium composition of 0.70. There is experimental evidence to indicate that the mobility enhancement at increasing indium composition is due to an effect of a reduction in the alloy scattering and in the effective mass of the carriers. It was found that the insertion of an additional In 0.53Ga 0.47As interface smoothing layer between the strained InGaAs channel and the In 0.52Al 0.48As spacer layer did not have a significant effect on the mobility enhancement in the heterostructures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.