Abstract
LiDAR sensors are widely used in many areas and, in recent years, that includes agricultural tasks. In this work, a self-developed mobile terrestrial laser scanner based on a 2D light detection and ranging (LiDAR) sensor was used to scan an intensive olive orchard, and different algorithms were developed to estimate canopy volume. Canopy volume estimations derived from LiDAR sensor readings were compared to conventional estimations used in fruticulture/horticulture research and the results prove that they are equivalent with coefficients of correlation ranging from r = 0.56 to r = 0.82 depending on the algorithms used. Additionally, tools related to analysis of point cloud data from the LiDAR-based system are proposed to extract further geometrical and structural information from tree row crop canopies to be offered to farmers and technical advisors as digital raster maps. Having high spatial resolution information on canopy geometry (i.e., height, width and volume) and on canopy structure (i.e., light penetrability, leafiness and porosity) may result in better orchard management decisions. Easily obtainable, reliable information on canopy geometry and structure may favour the development of decision support systems either for irrigation, fertilization or canopy management, as well as for variable rate application of agricultural inputs in the framework of precision fruticulture/horticulture.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.