Abstract

Abstract Home Oxygen Therapy (H.O.T.) is a medical treatment for severe lung diseases in which the patients are supplied concentrated oxygen. This paper investigates the use of a follower robot as a support device for H.O.T. patients, consisting of a two-wheeled differential drive robot connected to the user by tether. Two different control algorithms were studied using dynamic simulation and motion capture experiments with healthy subjects. In further experiments with H.O.T. patients, including a questionnaire survey, it was confirmed that Follow the Leader control was capable of following the user’s trajectory more accurately than Pseudo-Joystick control, and that overall H.O.T. patients showed a preference for Follow the Leader control.

Highlights

  • Chronic Obstructive Pulmonary Disease (COPD) is a common respiratory condition where airflow through the lungs is restricted, often involving permanent lung damage, with patients experiencing coughing, wheezing, and shortness of breath

  • Simulation environment To investigate the performance of the follower robot, we developed a dynamic simulation with the open source VREP software package, using the Bullet physics engine

  • It is likely that odometry errors caused by wheel-slip contributed to the deviation when using Follow the Leader control

Read more

Summary

Introduction

Chronic Obstructive Pulmonary Disease (COPD) is a common respiratory condition where airflow through the lungs is restricted, often involving permanent lung damage, with patients experiencing coughing, wheezing, and shortness of breath. The effect on quality of life can be significant: those with severe shortness of breath may be unable to move around without aid, they may be unable to participate in physical activities, and they may suffer from anxiety and depression as a result [2,3]. We believe that a follower robot can improve the quality of life of H.O.T. patients by carrying the H.O.T. equipment, reducing their physical burden and increasing their freedom of movement. The requirements for such a system are as follows:

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call