Abstract

AbstractA built-in capacitive proximity sensing method for a charge-induction electrostatic film actuator is proposed. This actuator consists of two thin sheets that function as a stator and a slider. A stator is an insulating sheet with many strips of electrodes in it, whereas a slider is a dielectric sheet that has slight conductivity on its surface. By applying actuation voltage on stator electrodes, the slider that is placed on the stator is driven by electrostatic force. This research realized the simultaneous actuation and proximity sensing using the same electrodes by integrating a resonance-based capacitance measurement circuit into a driving circuit. The study investigated the impact of having a slider on sensing performance, confirming the feasibility of simultaneous sensing and driving. The implemented system achieved an interactive actuation that changed driving velocity according to the proximity distance of the human hand.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call