Abstract

In order to meet the increasing demand for the data storage, 5G wireless networks embodying mobile edge computing (MEC) features arise as a compelling solution. In this paper, the dense heterogeneous network (HetNet) and the MEC infrastructure are exploited to propose a mobile cloud storage framework that minimizes the data transmission delay. The proposed framework is composed of two parts: A data management with error correction (DMEC) scheme, and a radio resource management (RRM) scheme. The DMEC scheme, derived from the redundant array of inexpensive disks (RAID) technology, is implemented in the user equipment (UE) side, and it intelligently exploits the overlapping coverage of HetNet to minimize the transmission delay. On the other hand, the RRM scheme, based on mechanism design, presents the physical resource block allocation problem as a graph coloring problem and performs the radio resource allocation in multiuser scenario to maximize the network performance. The RRM scheme also comprises a pricing algorithm, which calculates the price a UE needs to pay for the resources. The proposed RRM scheme exhibits several desirable characteristics such as incentive compatibility, efficiency, and truthfulness, all derived from the Vickrey–Clarke–Groves mechanism. Simulation results are presented, showing that the proposed framework when compared to baseline techniques, minimizes the transmission delay by $10^2$ %, which places our proposal as effective and efficient solution for the mobile cloud storage problem.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.