Abstract

Abstract Background and Aims Uromodulin (UMOD) is the most abundant renal protein secreted into urine by the thick ascending epithelial (TAL) cells of the loop of Henle. Genetic studies have demonstrated an association between UMOD risk variants and hypertension. Studies on UMOD overexpressing transgenic mice have shown that UMOD increases the tubular salt reabsorption via enhanced NKCC2 activity. We aimed to dissect the effect of salt-loading and blood pressure on the excretion of UMOD. Method Wistar-Kyoto (WKY) and stroke-prone spontaneously hypertensive (SHRSP) rats (n=8/sex/strain) were maintained on 1% NaCl for three weeks. Salt-loaded SHRSP were treated with nifedipine. Tubule isolation and ex vivo incubation with nifedipine were used to assess its direct effect on TAL. Results Urinary UMOD excretion was significantly reduced after salt loading in both strains (figure). In salt-loaded SHRSP, nifedipine treatment reduced blood pressure and urinary UMOD excretion. The reductions in urinary UMOD excretion were dissociated from unchanged kidney UMOD protein and mRNA levels, however, were associated with UMOD endoplasmic reticulum accumulation, thus suggesting secretion as a key regulatory step. Ex vivo experiments with TAL tubules showed that nifedipine did not have a direct effect on UMOD secretion. Conclusion Our data suggest a direct effect of salt on UMOD secretion independent of blood pressure and a potential role of endoplasmic reticulum stress on the control of UMOD secretion. The role of UMOD as a cardiovascular risk marker deserves mechanistic reappraisal and further investigations based on our findings.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call