Abstract

A longstanding interest in bone tissue engineering is the development of new bio-scaffolds that can be manufactured on a large scale with high throughput at low cost. Here, we report a low-cost and systematically optimized hydrothermal synthesis for producing Mo-doped potassium titanate nanofibers with high structural purity. This new nanosynthesis is based on bone tissue growth on an undoped titanate nanowires-entangled scaffold, as previously reported by our team. The morphological and structural characterization data suggest that the crystal structure of Mo-doped titanate nanofibers closely resembles that of the undoped ones. This resemblance is potentially valuable for assessing the role of Mo dopants in engineering bone tissue.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.