Abstract
Tissue engineering is based on combining cells with suitable scaffolds and growth factors. Recently, bone tissue engineering has been especially investigated deeply due to a large number of bone-related diseases. One approach to improve scaffolds is based on using piezoelectric materials as a way to influence the growing bone tissue by mechanical stress. Another method to stimulate tissue growth is by applying an external magnetic field to composites of magnetostrictive and piezoelectric materials, as well as the possibility to prepare oriented surfaces by orienting embedded magnetic fibers or nanoparticles. In addition, magnetic scaffolds without other special properties have also been reported to show improved properties for bone tissue and other tissue engineering. Here, we provide an overview of recent research on magnetic scaffolds for tissue engineering, differentiating between bone and other tissue engineering. We show the advantages of magnetic scaffolds, especially related to cell guidance and differentiation, and report recent progress in the production and application of such magnetic substrates for different areas of tissue engineering.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.