Abstract
Sulfur ion (S2−) plays a significant and considerable role in many living organisms and ecosystems, while its abnormal content can pose a serious hazard to human health and ecological environment. Hence, it is extremely meaningful to construct a highly sensitive and selective analytical platform for S2− detection in complex microenvironment, particularly in biological systems. In this study, phosphomolybdic acid and L-Arg were utilized to prepare a new molybdenum doped carbon-dots nanozyme (Mo-CDs) with great peroxidase-like activity by one-step hydrothermal approach. In the presence of H2O2, Mo-CDs converted 3, 3′, 5, 5′-tetramethyl benzidine (TMB) into blue oxTMB, but S2− strongly reduced the blue solution to colorless and then brown, which established significant selectivity toward S2−. Mo-CDs illustrated a wide linear range (2.5 μM-900 μM) and low detection limit (LOD = 76 nM) by ultraviolet and smartphone-assisted visualized colorimetric analysis. Especially, the smartphone-assisted analysis platform successfully realized quick, portable, sensitive and visible identification of S2− with high recovery (95.7–106.7 %) and excellent specificity in water samples. More importantly, Mo-CDs was developed to antibacterial applications based on good peroxidase-like activity. This research not only constructed a new and efficient carbon-dots nanozyme and a low-cost, portable, visual analysis platform for real-time detection of S2−, but also proposed a novel design strategy and methodology for exploiting multifunctional nanozyme detection tool with great practical application.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.