Abstract
Data transfer between processing and memory units in modern computing systems is their main performance and energy-efficiency bottleneck, commonly known as the von Neumann bottleneck. Prior research attempts to alleviate the problem by moving the computing units closer to the memory that has had limited success since data transfer is still required. In this chapter, we present mMPU memristive memory processing unit, which relies on a memristive memory to perform computation using the memory cells, and therefore directly tackles the von Neumann bottleneck. In mMPU, the operation is controlled by a modified controller and peripheral circuit without changing the structure of the memory cells and arrays. As the basic logic element, we present Memristor-Aided loGIC (MAGIC), a technique to compute logical functions using memristors within the memory array. We further show how to extend basic MAGIC primitives to execute any arbitrary Boolean function and demonstrate the microarchitecture of the memory. This process is required to enable data computing using MAGIC. Finally, we show how to build the computing system using mMPU, which performs computation using MAGIC to enable a real processing-in-memory machine.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.