Abstract
Semi-supervised multi-view learning has been an important research topic due to its capability to exploit complementary information from unlabeled multi-view data. This work proposes MMatch, a new semi-supervised discriminative representation learning method for multi-view classification. Unlike existing multi-view representation learning methods that seldom consider the negative impact caused by particular views with unclear classification structures (weak discriminative views). MMatch jointly learns view-specific representations and class probabilities of training data. The representations concatenated to integrate multiple views’ information to form a global representation. Moreover, MMatch performs the smoothness constraint on the class probabilities of the global representation to improve pseudo labels, whereas the pseudo labels regularize the structure of view-specific representations. A discriminative global representation is mined with the training process, and the negative impact of weak discriminative views is overcome. Besides, MMatch learns consistent classification while preserving diverse information from multiple views. Experiments on several multi-view datasets demonstrate the effectiveness of MMatch.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have