Abstract

Influence maximization is an important research topic in social networks that has different applications such as analyzing spread of rumors, interest, adoption of innovations, and feed ranking. The goal is to select a limited size subset of vertices (called a seed-set) in a Social Graph, so that upon their activation, a maximum number of vertices of the graph become activated, due to the influence of the vertices on each other. The linear threshold model is one of two classic stochastic propagation models that describe the spread of influence in a network. We present a new approach called MLPR (matrix multiplication, linear programming, randomized rounding) with linear programming used as its core in order to solve the influence maximization problem in the linear threshold model. Experiments on four real data sets have shown the efficiency of the MLPR method in solving the influence maximization problem in the linear threshold model. The spread of the output seed-sets is as large as when the state-of-the-art algorithms are used; however, unlike most of the existing algorithms, the runtime of our method is independent of the seed size and does not increase with it.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call