Abstract

Abstract Purpose Beam hardening effects due to photons passing through the multi-leaf collimator (MLC) frequently exist in Intensity Modulated Radiotherapy (IMRT) fields. A fast online dose transmission verification system, MBMC (Measurement Based Monte Carlo), can verify IMRT delivery by using a fluence efficiency map to replace MLC geometry and movement simulation. This system, however, ignores beam hardening effects, and assumes that dose disturbances through the MLC are not significant for IMRT fields. This assumption has to be justified before it can be applied in the clinic. Methods In this study, we simulated several field sizes (0.5 × 0.5, 1 × 1, 3 × 3, 5 × 5, and 10 × 10 cm2) to evaluate the dose influence of beam hardening effects under clinical conditions. In addition, a LATCH technique was used during simulation processes, which can record each particle interaction with specific gantry components, to distinguish between dose contribution from the total beam and MLC mediated beam. Results The MLC indeed caused significant beam hardening effects, but the dose contribution fraction from the MLC was noticeable only for field sizes less than 1 × 1 cm2. Furthermore, in mixed fields containing both the total beam and MLC mediated beam, the maximum dose deviation due to the presence of the MLC is small even for the 0.5 × 0.5 cm2 field size (∼2%). Conclusions The MLC causes noticeable beam hardening effects, but this effect results in only slight dose differences that are only noticeable for small field sizes in IMRT delivery. The use of a fluence efficiency map was feasible in our MBMC system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.