Abstract

In positron emission tomography (PET), attenuation correction is typically done based on information obtained from transmission tomography. Recent studies show that time-of-flight (TOF) PET emission data allow joint estimation of activity and attenuation images. Mathematical analysis revealed that the joint estimation problem is determined up to a scale factor. In this work, we propose a maximum likelihood reconstruction algorithm that jointly estimates the activity image together with the sinogram of the attenuation factors. The algorithm is evaluated with 2-D and 3-D simulations as well as clinical TOF-PET measurements of a patient scan and compared to reference reconstructions. The robustness of the algorithm to possible imperfect scanner calibration is demonstrated with reconstructions of the patient scan ignoring the varying detector sensitivities.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call