Abstract

Data assimilation (DA) integrates experimental measurements into computational models to enable high-fidelity predictions of dynamical systems. However, the cost associated with solving this inverse problem, from measurements to the state, can be prohibitive for complex systems such as transitional hypersonic flows. We introduce an accurate and efficient deep-learning approach that alleviates this computational burden, and that enables approximately three orders of magnitude computational acceleration relative to variational techniques. Our method pivots on the deployment of a deep operator network (DeepONet) as an accurate, parsimonious and efficient meta-model of the compressible Navier–Stokes equations. The approach involves two main steps, each addressing specific challenges. Firstly, we reduce the computational load by minimizing the number of costly direct numerical simulations to construct a comprehensive dataset for effective supervised learning. This is achieved by optimally sampling the space of possible solutions. Secondly, we expedite the computation of high-dimensional assimilated solutions by deploying the DeepONet. This entails efficiently navigating the DeepONet’s approximation of the cost landscape using a gradient-free technique. We demonstrate the successful application of this method for data assimilation of wind-tunnel measurements of a Mach 6, transitional, boundary-layer flow over a 7-degree half-angle cone.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.