Abstract
In the Neil Brown Instruments' MKIIIB-CTD (conductivity-temperature-depth profiler), the system's digital outputs for the three basic measurements of temperature, conductivity and pressure typically show some small amplitude deviations from smooth calibrations which should be corrected for to achieve high accuracies, as required, e.g. within the Hydrographic Program (WHP) of the current World Ocean Circulation Experiment (WOCE). These deviations show up as (i) a strong nonlinearity or even discontinuity of several mK close to 0°C in temperature output leading to too high subzero temperatures; (ii) a jump of order 0.002 mS cm −1 in conductivity output when passing the half-range value 32.768 mS cm −1 , which causes jumps in the relation of potential temperature and salinity; and (iii) errors in pressure measurements of up to 4 dbar due to mechanical hysteresis and both static and dynamic responses to temperature changes. The existence of these effects is demonstrated, and methods to reduce the associated errors are suggested.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have