Abstract

To better understand the impacts of multiple stressors in freshwaters, we investigated the effects of mixtures of zinc and inorganic phosphorus on microbial decomposition of leaf litter. Alder leaves were colonized in a stream and placed in microcosms with stream water supplemented or not with 3 concentrations of zinc (Zn up to 9.8 mg/l) or phosphate (P–PO 4 3− up to 0.5 mg/l), alone and in all possible combinations. We measured leaf mass loss, and fungal biomass, reproduction and diversity. In control microcosms, 23 species of aquatic hyphomycetes were identified on leaves, and the exposure to the highest zinc concentration reduced diversity to 14 species. Articulospora tetracladia was the dominant species followed by Flagellospora sp. and Alatospora acuminata. The exposure to phosphate increased the contribution of A. acuminata, but this species was negatively affected by zinc. Under high zinc stress, Varicosporium elodeae increased its contribution to the total conidial production. The exposure to high zinc concentration, alone or in mixtures with phosphate, led to shifts in fungal community structure, as indicated by cluster analysis based on sporulation data and denaturing gradient gel electrophoresis (DGGE) fingerprints of fungal DNA. These changes were accompanied by a reduction in leaf decomposition, particularly in mixtures with high Zn concentration, in which leaf mass loss was 30% lower than in the control. This suggests that the co-occurrence of zinc and phosphate may have negative effects on stream ecosystem functioning. However, we did not detect decreased leaf-associated fungal biomass and sporulation, probably because a delay in fungal colonization occurred due to the presence of stressors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call