Abstract

The effect of zinc on leaf decomposition by aquatic fungi was studied in microcosms. Alder leaf disks were precolonized for 15 days at the source of the Este River and exposed to different zinc concentrations during 25 days. Leaf mass loss, fungal biomass (based on ergosterol concentration), fungal production (rates of [1-14C]acetate incorporation into ergosterol), sporulation rates, and species richness of aquatic hyphomycetes were determined. At the source of the Este River decomposition of alder leaves was fast and 50% of the initial mass was lost in 25 days. A total of 18 aquatic hyphomycete species were recorded during 42 days of leaf immersion. Articulospora tetracladia was the dominant species, followed by Lunulospora curvula and two unidentified species with sigmoid conidia. Cluster analysis suggested that zinc concentration and exposure time affected the structure of aquatic hyphomycete assemblages, even though richness had not been severely affected. Both zinc concentration and exposure time significantly affected leaf mass loss, fungal production and sporulation, but not fungal biomass. Zinc exposure reduced leaf mass loss, inhibited fungal production and affected fungal reproduction by either stimulating or inhibiting sporulation rates. The results of this work suggested zinc pollution might depress leaf decomposition in streams due to changes in the structure and activity of aquatic fungi.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.