Abstract

Pressure diffusion is a mass diffusion process forced by pressure gradients. It has the ability to segregate two species of a mixture, driving the densest species toward high pressure zones, but requires very large pressure gradients to become noticeable. An inertial cavitation bubble develops large pressure gradients in its vicinity, especially as the bubble rebounds at the end of its collapse, and it is therefore expected that a liquid mixture surrounding such a bubble would become segregated. Theory developed in an earlier paper shows that this is indeed the case for sufficiently large molecules or nano-particles. The main theoretical results are recalled and a possible implication of this segregation phenomenon on the well-known cavitation-enhanced crystals nucleation is proposed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.