Abstract
The alloying of Fe with T=V, Cr and Mn by high-energy ball milling of elemental powder mixtures has been studied from the scale of a powder particle down to the atomic scale using X-ray and neutron diffraction, Mossbauer spectrometry and magnetic measurements for Fe1−xTx alloys with x=0.50, 0.65 for T=V, x=0.50, 0.70 for T=Cr and x=0.72 for T=Mn. Different alloying behaviours are observed according to T once powder particles have the final composition. The rather fast mechanical alloying of Fe with Mn reflects the statistical nature of the milling process in contrast to the slow mixing of Fe with V and of Fe with Cr. Hyperfine magnetic field distributions remain stationary in shape in the last milling stage at room temperature both for T=V and T=Cr. Magnetic measurements evidence the persistence with milling time of a large population of nanometer-sized Fe-Cr zones that are superparamagnetic at room temperature and at 400 K. By contrast, room-temperature Mossbauer spectra show only a single line for long milling times. The unmixed stationary state of milled p-Fe0.7Cr0.3 is discussed in the light of a recent model of systems driven by competing dynamics.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.