Abstract

Nearly equiatomic nanocrystalline titanium nitride (Ti56N44) powder with an average grain size of 5 nm has been synthesized by ball milling elemental Ti powder under nitrogen gas flow at room temperature. During the first stage of reactive ball milling (RBM) (time <3.6 ks), the metallic Ti powder tends to agglomerate to form powder particles with a larger diameter. At the second stage (3.6 to 22.0 ks), the agglomerated particles of Ti fragment to form smaller particles. These smaller particles that have new or fresh surfaces begin to react with the milling atmosphere (nitrogen) during the third stage of milling (22 to 86 ks) to form TiN powder coexisting with unreacted Ti powder. Toward the end of milling (86 to 173 ks), a single phase of nanocrystalline TiN (NaCl structure) is obtained. The powder of this end-product has a spherical-like morphology with an average particle size of about 0.4 μm diameter. A sintering procedure using plasma activation has been employed to consolidate the powder particles at several stages of the RBM. The as-milled and as-consolidated powders have been characterized as a function of the RBM time by means of X-ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM), optical metallography, and chemical analyses. Density measurements of the consolidated samples show that after 86 to 173 ks of the RBM time, the compacted samples are essentially fully dense (above 96 pct of the theoretical density for TiN). The results also show that the consolidated TiN compacts still maintain their unique nanocrystalline properties with an average grain size of about 65 nm. The hardness and some mechanical properties of the consolidated TiN compacts have been determined as a function of the RBM time.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.