Abstract

The Zeeman splitting of the ground states 1s(hh) and 1s(lh) of excitons with heavy and light holes, respectively, in a 15-nm isolated Al0.3Ga0.7As/GaAs quantum well in magnetic fields of up to 20 T is investigated according to the photoluminescence excitation spectra in the Faraday geometry (σ+− σ− components). The observed anomalous pattern of nonlinear Zeeman splitting and the nonmonotonic behavior of the effective hole g factor are interpreted in terms of the strong mixing of the magnetoexcitonic states containing light and heavy holes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call