Abstract

In this work, we report results of a study of electronic transport in nominally undoped p-type GaSb wafers typically employed as substrate material for the epitaxial growth of InAs/GaInSb type-II superlattices. Magnetic field dependent Hall-effect measurements and high-resolution mobility spectrum analysis clearly indicate p-type conductivity due to carriers in both the heavy and light hole bands. The extracted hole concentrations indicate a thermal activation energy of 17.8 meV for the dominant native acceptor-like defects. A temperature-independent effective mass ratio of 9.0 ± 0.8 was determined from the ratio of measured heavy and light hole concentrations. Over the 56 K–300 K temperature range, the light hole mobility was found to be 4.7 ± 0.7 times higher than the heavy hole mobility. The measured room temperature mobilities for the light and heavy holes were 2550 cm2/Vs and 520 cm2/Vs, respectively.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.