Abstract
Tracking targets in clutter, with the inherent data association problem, naturally leads to a Gaussian mixture representation of the probability density function (pdf) of the target state vector, conditioned on the measurements observed. Online trackers require reduction of the number of components in the mixture on each processing cycle, and the integral square error (ISE) based mixture reduction algorithm (MRA) significantly outperforms known alternative algorithms. Moreover, to handle target maneuver onset and changing trajectory characteristics, one can use multiple model adaptive estimation in the form of either multiple model adaptive estimation (MMAE) or interacting multiple model (IMM) algorithms. For maneuvering targets in clutter, one can replace each Kalman filter within a conventional MMAE or IMM with an ISE-based MRA, or better yet, replace each Kalman filter within an ISE-based algorithm with an MMAE or IMM, to yield superior tracking of aggressive maneuvers in deep clutter. Such an ISE-based algorithm of MMAEs is seen to have performance attributes significantly superior to that of a current state-of-the-art tracker.
Submitted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have