Abstract
A series of four new copper(II) complexes [Cu2(2-BrC6H4CH2COO)4(Phen)2] (1), [Cu(2-BrC6H4CH2COO)2(Bipy)] (2), [Cu2(2-BrC6H4CH2COO)4(3-BrPy)2] (3) and [Cu2(2-BrC6H4CH2COO)4(3-MePy)2] (4) where Phen = 1,10-phenenthroline, Bipy = 2,2′-bipyridine, BrPy = bromopyridine and MePy = methylpyridine have been successfully synthesized and analyzed by elemental analysis, FT-IR, UV-Visible, and single crystal XRD. Complexes 1, 3 and 4 are dimeric and crystallize in the monoclinic space groups p21/c and C2/c, respectively. Distorted square pyramidal geometry around each Cu(II) ion in 1 is formed by the two nitrogen atoms from phenenthroline lying equatorially and three oxygen atoms from three monodentately coordinated carboxylate ligands. Two out of three ligands bridged the two metal ions with Cu···Cu intra dimer distance of 3.62 A. In 3 and 4, four bidentate carboxylate ligands coordinate to two metal atoms which bridge them equatorially to give rise paddlewheel conformation with square pyramidal geometry around each metal atom. The axial positions of a square pyramid and trigonal bipyramid are occupied by nitrogen donor substituted pyridines with Cu···Cu intra dimer distances of 2.66 and 2.69 A, respectively. The complex 2 being monomeric, crystallizes in the monoclinic space group C2/c with distorted square planar geometry around metal atom. A wide range of hydrogen bonding and π‒π stacking interactions are present throughout the crystal lattice in all complexes. DNA binding study through spectroscopic technique suggested strong capacity of complexes 1–4 to bind with DNA strand preferably through intercalative and groove binding modes with Kb values 6.03 × 103, 1.34 × 104, 3.18 × 104 and 3.14 × 104 M–1 respectively. The α-glucosidase and anticholinesterase enzyme inhibition assays were performed to investigate the potential of 1–4 as anti-diabetic and anti-alzheimer agents. The results revealed anti-diabetic nature of synthesized complexes with IC50 values in following order 1 < 2 < 3 < 4 with acarbose as control in concentration dependent manner. All these complexes exhibited mild activities against anticholinesterases with galantamine hydrobromide as control. The manuscript reports structurally diverse, bio-active complexes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.