Abstract
To quantify the effect of the sodium-glucose co-transporter 2 inhibitor, empagliflozin, on renal glucose reabsorption in patients with type 2 diabetes, and to evaluate covariate effects, using a mechanistic population pharmacokinetic-pharmacodynamic (PK-PD) model. Four phase I/II trials were used for model development. Empagliflozin's PK characteristics were characterized by a two-compartmental model with sequential zero- and first-order absorption. Urinary glucose excretion (UGE) was described as dependent on renal glucose filtration and reabsorption; splay of the glucose reabsorption/excretion curves was considered. The modelling assumed that empagliflozin lowers the maximum renal glucose reabsorption capacity and, thereby, the renal threshold for glucose (RTg). Covariate effects were investigated using a full covariate modelling approach, emphasizing parameter estimation. The PK-PD model provided a reasonable description of the PK characteristics of empagliflozin and its effects on UGE across a range of renal function levels. Its parameters are consistent with reported values for renal physiology. Using this model, the effect of empagliflozin on renal glucose reabsorption was quantified. Steady-state empagliflozin doses (1, 5, 10 and 25 mg) reduced RTg from 12.5 mmol/L [95% confidence interval (CI) 12.0, 13.1] to 5.66 (95% CI 4.62, 6.72), 3.01 (95% CI 2.33, 3.69), 2.53 (95% CI 1.83, 3.14) and 2.21 (95% CI 1.47, 2.84) mg/dl, respectively. Covariate analysis showed the effect of empagliflozin on UGE was not influenced, to a clinically relevant extent, by sex, age or race. A method for characterizing renal glucose reabsorption was developed that does not require complex glucose clamp experiments. These analyses indicate that empagliflozin provided concentration-dependent RTg reductions, with 10 and 25 mg providing near-maximum RTg-lowering.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.