Abstract
Considering the variable valence characteristics of rare earth elements, they can be in a variety of valence forms coexistence. Doping of rare earth element with different valence states may produce different energy levels to tune the semiconductor energy band structure. We utilize rare earth element Ce doping TiO2 for the development of high-performance semiconductor surface-enhanced Raman scattering (SERS) substrates based on an energy-level tuning strategy. Ce doping not only forms multiple energy levels including Ce3+ and Ce4+ metal doping energy levels in the bandgap of TiO2, but also enriches the surface state level of TiO2 itself, which together promote the separation of photogenerated carriers and improve charge transfer efficiency between substrates and absorbed molecules. This endows TiO2 semiconductor substrate with a higher SERS enhancement factor, which can reach 2.2 × 106. The detectable concentration of methylene blue can be as low as 10−10 mol/L. Moreover, the semiconductor substrate exhibits excellent uniformity and stability. This study not only provides a new strategy to develop excellent semiconductor SERS substrate with multiple energy levels, but also lays the foundation for promising practical application of semiconductor substrate.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.