Abstract

The current paper outlines a comprehensive methodology for modeling speed data on two-lane roads during periods of heavy traffic characterized by heterogeneous vehicle types. In such scenarios, the presence of diverse vehicle types causes a significant departure from the normal speed distribution model. This deviation becomes particularly pronounced during heavy traffic flows due to the frequent interactions among vehicles within the traffic stream. Consequently, there arises a necessity to develop a modeling approach specifically tailored to such flow conditions. Drawing upon empirical data collected from a major intercity road in India, this study uncovers a notable skewness in speed data under heavy traffic conditions. This skewness primarily stems from the formation of vehicle platoons within the traffic stream, exerting a substantial influence on their speed characteristics. By scrutinizing the distribution of this data, the study concludes that a logarithmic transformation effectively aligns with the assumption of normality. This assertion is supported by various goodness-of-fit metrics, affirming the suitability of the proposed modeling approach for capturing the intricacies of speed behavior in heterogeneous traffic environments.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.